https://arxiv.org/pdf/2305.04926.pdf
https://github.com/ZhongqunZHANG/awesome-6d-object
https://openaccess.thecvf.com/content_cvpr_2016/papers/Doumanoglou_Recovering_6D_Object_CVPR_2016_paper.pdf
RelPose++: Recovering 6D Poses from Sparse-view Observations Amy Lin* Jason Y. Zhang* Deva Ramanan Shubham Tulsiani Carnegie Mellon University
https://amyxlase.github.io/relpose-plus-plus/
https://arxiv-sanity-lite.com/
https://github.com/YoungXIAO13/ObjectPoseEstimationSummary/blob/master/paper.md
Awesome Object Pose Estimation Recovering 6D Poses Deep-6DPose Recovering 6D Object Pose
https://github.com/VITA-Group/NeRF-SOS
NeRF-SOS: Any-View Self-supervised Object Segmentation ...
https://arxiv.org › cs
This paper carries out the exploration of self-supervised learning for object segmentation using NeRF for complex real-world scenes. Our
SimpleRecon3D Reconstruction without 3D Convolutions state-of-the-art depth accuracy competitive 3D scene reconstruction
SimpleRecon: 3D Reconstruction Without 3D Convolutions | SpringerLink
https://link.springer.com/chapter/10.1007/978-3-031-19827-4_1
[PDF] SimpleRecon: 3D Reconstruction Without 3D Convolutions
https://nianticlabs.github.io/simplerecon/
https://www.marktechpost.com/2022/09/16/simplerecon-a-computer-vision-framework-that-produces-3d-reconstructions-without-the-use-of-3d-convolutions/
https://arxiv.org/pdf/2208.14743.pdf
https://www.ecva.net/papers/eccv_2022/papers_ECCV/papers/136930001.pdf
https://github.com/rerun-io/simplerecon
沒有留言:
張貼留言