2023年11月4日 星期六

字型 ai font chinese generator Character | Synthesis | tensorboard | tensorflow | Stroke order | Principles | Regular script

 https://www.semanticscholar.org/paper/GAN-Based-Unpaired-Chinese-Character-Image-via-and-Gao-Wu/a0a8415b30824ff15c7a63ebe1dd05c95116cfba

GAN-Based Unpaired Chinese Character Image Translation via Skeleton Transformation and Stroke Rendering | Semantic Scholar 

方正字庫 FZSSBJW
ai 生成 字型
字型 全字庫 字型 字庫 文鼎雲字庫
金梅 華康 文鼎 雅坊 全真 超研澤 王漢宗  蒙納  博洋
基於深度學習的中文字型生成之研究與實作
 

構字式 漢字構形資料庫
https://zh.wikipedia.org/zh-tw/%E4%B8%AD%E6%96%87%E5%9C%96%E6%9B%B8%E5%88%86%E9%A1%9E%E6%B3%95
https://en.wikipedia.org/wiki/New_Classification_Scheme_for_Chinese_Libraries
https://zh.wikipedia.org/zh-tw/%E5%9B%9B%E8%A7%92%E5%8F%B7%E7%A0%81
https://en.wikipedia.org/wiki/Four-Corner_Method

Automatic Generation of Artistic Chinese CalligraphyCiteSeerXhttps://citeseerx.ist.psu.edu › document  S Xu  Personalized font generation from a single character. The first row shows a single character written by different users in their respective handwriting styles, ...

AT-CycleGAN: Historical Tibetan Document Characters Generation Using Attention and Triplet Loss's CycleGAN
(PDF) Visual Attention Adversarial Networks for Chinese Font Translation
The association between children’s common Chinese stroke errors and spelling ability
(PDF) Instance Segmentation for Chinese Character Stroke Extraction, Datasets and Benchmarks

chinese Calligraphy font characters  AI strokes
https://chinesefontdesign.com/tag/ink-brush-writing-brush
Learning one‐to‐many stylised Chinese character transformation and generation by generative adversarial networks - Chen - 2019 - IET Image Processing - Wiley Online Library

https://www.researchgate.net/figure/The-ablation-experiment-of-our-model-Red-rectangles-mark-some-images-with-incomplete_fig2_369289987
https://www.researchgate.net/figure/a-Illustration-of-25-kinds-of-Chinese-character-strokes-considered-in-this-paper-which_fig1_364733339
https://www.researchgate.net/figure/It-shows-part-of-the-correct-stroke-sequence-of-the-character-ding-with-the-red-arrow_fig2_335869140

Android Signature Pad Android Signature Pad is an Android library for drawing sketch Handwritten signature Character Recognition

 Handwritten character recognition (HCR)

1D-CNN based Fully Convolutional Model for Handwriting ...
Towards Data Science
https://towardsdatascience.com ›    EASTER model explained for fast, efficient, and scalable HTR/OCR. Kartik Chaudhary. Towards Data Science. ScienceTowards ‎Science1D

Convolutional-Neural-Network-Based Handwritten ...
MDPI https://www.mdpi.com ›    Convolutional-Neural-Network-Based Handwritten Character Recognition: An Approach with Massive Multisource Data ... Proposed CNN model for character recognition. Kartik ‎ScienceTowards ‎Science1D-

[PDF] Rotation-free Online Handwritten Character Recognition using Dyadic Path Signature Features, Hanging Normalization, and Deep

https://www.mdpi.com/2079-9292/10/4/456
Electronics | Free Full-Text | An Automated Method for Biometric Handwritten Signature Authentication Employing Neural Networks


analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.
Abbreviations
The following abbreviations are used in this manuscript:
BLE    Bluetooth Low Energy
BLSTM    Bidirectional Long Short-Term Memory
EER    Equal Error Rate
FPR    False-Positive Rate
GRU    Gated Recurrent Unit
IQR    Interquartile Range
LSTM    Long Short-Term Memory
MEMS    Microelectromechanical systems
NFC    Near-Field Communication
PReLU    Parametric Rectified Linear Unit
ReLU    Rectified Linear Unit
ROC    Receiver Operating Characteristic
TPR    True-Positive Rate
t-SNE    t-Distributed Stochastic Neighbor Embedding
USB    Universal Serial Bus
References

    Szczuko, P.; Czyżewski, A.; Hoffmann, P.; Bratoszewski, P.; Lech, M. Validating data acquired with experimental multimodal biometric system installed in bank branches. J. Intell. Inf. Syst. 2019, 52, 1–31. [Google Scholar] [CrossRef][Green Version]
    Czyzewski, A.; Hoffmann, P.; Szczuko, P.; Kurowski, A.; Lech, M.; Szczodrak, M. Analysis of results of large-scale multimodal biometric identity verification experiment. IET Biom. 2019, 8, 92–100. [Google Scholar] [CrossRef]
    Lech, M.; Czyzewski, A. A handwritten signature verification method employing a tablet. In Proceedings of the Signal Processing—Algorithms, Architectures, Arrangements, and Applications Conference Proceedings, SPA, Poznan, Poland, 21–23 September 2016; IEEE Computer Society: Washington, DC, USA, 2016; pp. 45–50. [Google Scholar]
    Lech, M.; Czyzewski, A. Handwritten Signature Verification System Employing Wireless Biometric Pen. In BT—Intelligent Methods and Big Data in Industrial Applications; Springer: Cham, Switzerland, 2019; pp. 307–319. [Google Scholar]
    Huber, R.; Headrick, A. Handwriting Identification; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
    Impedovo, D.; Pirlo, G. Automatic signature verification: The state of the art. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2008, 38, 609–635. [Google Scholar] [CrossRef][Green Version]
    Harralson, H.H. Developments in Handwriting and Signature Identification in the Digital Age; Taylor and Francis: Milton Park, UK, 2014; ISBN 9781315721736. [Google Scholar]
    Stewart, L.F. The Process of Forensic Handwriting Examinations. Foresic Res. Criminol. Int. J. 2017, 4, 139–141. [Google Scholar] [CrossRef]
    Bird, C.; Found, B.; Rogers, D. Forensic document examiners’ examiners’ skill in distinguishing between natural and disguised handwriting behaviors. J. Forensic Sci. 2010, 55, 1291–1295. [Google Scholar] [CrossRef] [PubMed]
    Guarnera, L.; Farinella, G.M.; Furnari, A.; Salici, A.; Ciampini, C.; Matranga, V.; Battiato, S. GRAPHJ: A Forensics Tool for Handwriting Analysis BT—Image Analysis and Processing, ICIAP 2017; Battiato, S., Gallo, G., Schettini, R., Stanco, F., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 591–601. [Google Scholar]
    Diaz, M.; Ferrer, M.A.; Impedovo, D.; Malik, M.I.; Pirlo, G.; Plamondon, R. A perspective analysis of handwritten signature technology. ACM Comput. Surv. 2019, 51, 1–39. [Google Scholar] [CrossRef][Green Version]
    O’Reilly, C.; Plamondon, R. Development of a Sigma–Lognormal representation for on-line signatures. Pattern Recognit. 2009, 42, 3324–3337. [Google Scholar] [CrossRef]
    Galbally, J.; Martinez-Diaz, M.; Fierrez, J. Aging in Biometrics: An Experimental Analysis on On-Lline Signature. PLoS ONE 2013, 8, e69897. [Google Scholar] [CrossRef] [PubMed]
    Tolosana, R.; Vera-Rodriguez, R.; Fierrez, J.; Ortega-Garcia, J. Reducing the template ageing effect in on-line signature biometrics. IET Biometrics 2019, 8, 422–430. [Google Scholar] [CrossRef][Green Version]
    Pirlo, G.; Diaz, M.; Ferrer, M.A.; Impedovo, D.; Occhionero, F.; Zurlo, U. Early diagnosis of neurodegenerative diseases by handwritten signature analysis. In Proceedings of the Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Cham, Switzerland, 2015; Volume 9281, pp. 290–297. [Google Scholar]
    Bou, A.; Fischer, A.; Plamondon, R. Omega-Lognormal Analysis of Oscillatory Movements as a Function of Brain Stroke Risk Factors. In Proceedings of the 17th Biennial Conference of the International Graphonomics Society, Pointe-à-Pitre, Guadeloupe, 21–24 June 2015. [Google Scholar]
    Bidet-Ildei, C.; Pollak, P.; Kandel, S.; Fraix, V.; Orliaguet, J.P. Handwriting in patients with Parkinson disease: Effect of l-dopa and stimulation of the sub-thalamic nucleus on motor anticipation. Hum. Mov. Sci. 2011, 30, 783–791. [Google Scholar] [CrossRef] [PubMed]
    Wang, Z.; Abazid, M.; Houmani, N.; Garcia-Salicetti, S.; Rigaud, A.S. Online signature analysis for characterizing early stage Alzheimer’s disease: A feasibility study. Entropy 2019, 21, 956. [Google Scholar] [CrossRef][Green Version]
    Sae-Bae, N.; Memon, N. Online signature verification on mobile devices. IEEE Trans. Inf. Forensics Secur. 2014, 9, 933–947. [Google Scholar] [CrossRef]
    Tolosana, R.; Vera-Rodriguez, R.; Fierrez, J.; Ortega-Garcia, J. Exploring Recurrent Neural Networks for On-Lline Handwritten Signature Biometrics. IEEE Access 2018, 6, 5128–5138. [Google Scholar] [CrossRef]
    Ahrabian, K.; BabaAli, B. Usage of autoencoders and Siamese networks for online handwritten signature verification. Neural Comput. Appl. 2019, 31, 9321–9334. [Google Scholar] [CrossRef][Green Version]
    Schroff, F.; Kalenichenko, D.; Philbin, J. FaceNet: A unified embedding for face recognition and clustering. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Juan, PR, USA, 7–12 June 1997; pp. 815–823. [Google Scholar]
    Hadsell, R.; Chopra, S.; LeCun, Y. Dimensionality reduction by learning an invariant mapping. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, NY, USA, 17–22 June 2006; IEEE Computer Society: Washington, DC, USA; Volume 2. [Google Scholar]
    Ni, J.; Liu, J.; Zhang, C.; Ye, D.; Ma, Z. Fine-grained patient similarity measuring using deep metric learning. In Proceedings of the International Conference on Information and Knowledge Management, Proceedings; Association for Computing Machinery: New York, NY, USA, 2017; Volume Part F1318. [Google Scholar]
    Sohn, K. Improved deep metric learning with multi-class N-pair loss objective. In Proceedings of the Advances in Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016. [Google Scholar]
    Rippel, O.; Paluri, M.; Dollar, P.; Bourdev, L. Metric learning with adaptive density discrimination. In Proceedings of the 4th International Conference on Learning Representations, ICLR 2016—Conference Track Proceedings, San Juan, Puerto Rico, 2–4 May 2016. [Google Scholar]
    Guo, J.; Li, Y.; Lin, W.; Chen, Y.; Li, J. Network decoupling: From regular to depthwise separable convolutions. In Proceedings of the British Machine Vision Conference, BMVC 2018, Newcastle, UK, 2–6 September 2018. [Google Scholar]
    He, K.; Zhang, X.; Ren, S.; Sun, J. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; IEEE Computer Society: Washington, DC, USA, 2015; pp. 1026–1034. [Google Scholar]
    Lagunes-Fortiz, M.; Damen, D.I.; Mayol-Cuevas, W. Learning discriminative embeddings for object recognition on-the-fly. In Proceedings of the IEEE International Conference on Robotics and Automation, Montreal, QC, Canada, 20–24 May 2019; IEEE: New York, NY, USA, 2019; Volume 2019, pp. 2932–2938. [Google Scholar]
    Kaya, M.; Bilge, H.Ş. Deep metric learning: A survey. Symmetry 2019, 11, 1066. [Google Scholar] [CrossRef][Green Version]
    Kingma, D.P.; Ba, J.L. Adam: A method for stochastic optimization. In Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015 Conference Track Proceedings, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
    Van Der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
    Fierrez, J.; Galbally, J.; Ortega-Garcia, J.; Freire, M.R.; Alonso-Fernandez, F.; Ramos, D.; Toledano, D.T.; Gonzalez-Rodriguez, J.; Siguenza, J.A.; Garrido-Salas, J.; et al. BiosecurID: A multimodal biometric database. Pattern Anal. Appl. 2010, 13, 235–246. [Google Scholar] [CrossRef][Green Version]


https://www.edenai.co/post/optical-character-recognition-ocr-which-solution-to-choose

OCR technology consists of 3 steps:

    Image pre-processing stage, which consists of processing the image so that it can be exploited and optimized to recognize the characters. Pre-processing manipulations include: realignment, de-interference, binarization, line removal, zoning, word detection, script recognition, segmentation, normalization, etc.
    Extraction of the statistical properties of the image. This is the key step for locating and identifying the characters in the image, as well as their structures.
    Post-processing stage, which consists in reforming the image as it was before the analysis, by highlighting the “bounding boxes” (rectangles delimiting the text in the image) of the identified character sequences:


We have therefore chosen 4 OCR solution providers:

    Google Cloud Platform: Vision OCR API
    Microsoft Azure Cognitive Services: Computer Vision OCR
    Amazon Web Services: Amazon Textract
    OCR Space
Eden AI & Optical Character Recognition (OCR) : OCR Space‍